3-bit Walsh permutation/matrix columns/inverses
This is like the big table in 3-bit Walsh permutation/matrix columns, but (apart from the first row) the transforms are made not with binary matrices, but with inverses of binary matrices.
The non-zero entries are in the same places as in the corresponding binary matrix, but some entries are negative 1s.
| cc | cs | cp | t | main | positive | negative | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| neut. | neut. 3 | 37 | 124
|
![]() |
![]() 241 |
![]() 124 |
![]() 412 |
![]() 214 |
![]() 421 |
![]() 142 |
| 2+2 | P 4 | 26 | 134
|
![]() |
![]() 341 |
![]() 134 |
![]() 413 |
![]() 314 |
![]() 431 |
![]() 143 |
| 2+2 | P 4 | 26 | 125
|
![]() |
![]() 251 |
![]() 125 |
![]() 512 |
![]() 215 |
![]() 521 |
![]() 152 |
| 2+2 | P 4 | 25 | 234
|
![]() |
![]() 243 |
![]() 324 |
![]() 432 |
![]() 234 |
![]() 423 |
![]() 342 |
| 2+2 | P 4 | 25 | 126
|
![]() |
![]() 261 |
![]() 126 |
![]() 612 |
![]() 216 |
![]() 621 |
![]() 162 |
| 2+2 | P 4 | 23 | 245
|
![]() |
![]() 245 |
![]() 524 |
![]() 452 |
![]() 254 |
![]() 425 |
![]() 542 |
| 2+2 | P 4 | 23 | 146
|
![]() |
![]() 641 |
![]() 164 |
![]() 416 |
![]() 614 |
![]() 461 |
![]() 146 |
| 2+2 | R 5a | 11 | 247
|
![]() |
![]() 247 |
![]() 724 |
![]() 472 |
![]() 274 |
![]() 427 |
![]() 742 |
| 2+2 | R 5a | 12 | 147
|
![]() |
![]() 741 |
![]() 174 |
![]() 417 |
![]() 714 |
![]() 471 |
![]() 147 |
| 2+2 | R 5a | 14 | 127
|
![]() |
![]() 271 |
![]() 127 |
![]() 712 |
![]() 217 |
![]() 721 |
![]() 172 |
| 2+2 | F 5a | 37 | 135
|
![]() |
![]() 351 |
![]() 135 |
![]() 513 |
![]() 315 |
![]() 531 |
![]() 153 |
| 2+2 | F 5a | 37 | 236
|
![]() |
![]() 263 |
![]() 326 |
![]() 632 |
![]() 236 |
![]() 623 |
![]() 362 |
| 2+2 | F 5a | 37 | 456
|
![]() |
![]() 645 |
![]() 564 |
![]() 456 |
![]() 654 |
![]() 465 |
![]() 546 |
| 2+4 | BA 5 5b | 12 | 156
|
![]() |
![]() 651 |
![]() 165 |
![]() 516 |
![]() 615 |
![]() 561 |
![]() 156 |
| 2+4 | BA 5 5b | 14 | 136
|
![]() |
![]() 361 |
![]() 136 |
![]() 613 |
![]() 316 |
![]() 631 |
![]() 163 |
| 2+4 | BA 5 5b | 14 | 235
|
![]() |
![]() 253 |
![]() 325 |
![]() 532 |
![]() 235 |
![]() 523 |
![]() 352 |
| 2+4 | BA 5 5b | 11 | 256
|
![]() |
![]() 265 |
![]() 526 |
![]() 652 |
![]() 256 |
![]() 625 |
![]() 562 |
| 2+4 | BA 5 5b | 12 | 345
|
![]() |
![]() 345 |
![]() 534 |
![]() 453 |
![]() 354 |
![]() 435 |
![]() 543 |
| 2+4 | BA 5 5b | 11 | 346
|
![]() |
![]() 643 |
![]() 364 |
![]() 436 |
![]() 634 |
![]() 463 |
![]() 346 |
| 2+4 | BA 6 6 | 23 | 157
|
![]() |
![]() 751 |
![]() 175 |
![]() 517 |
![]() 715 |
![]() 571 |
![]() 157 |
| 2+4 | BA 6 6 | 25 | 137
|
![]() |
![]() 371 |
![]() 137 |
![]() 713 |
![]() 317 |
![]() 731 |
![]() 173 |
| 2+4 | BA 6 6 | 23 | 267
|
![]() |
![]() 267 |
![]() 726 |
![]() 672 |
![]() 276 |
![]() 627 |
![]() 762 |
| 2+4 | BA 6 6 | 26 | 237
|
![]() |
![]() 273 |
![]() 327 |
![]() 732 |
![]() 237 |
![]() 723 |
![]() 372 |
| 2+4 | BA 6 6 | 25 | 467
|
![]() |
![]() 647 |
![]() 764 |
![]() 476 |
![]() 674 |
![]() 467 |
![]() 746 |
| 2+4 | BA 6 6 | 26 | 457
|
![]() |
![]() 745 |
![]() 574 |
![]() 457 |
![]() 754 |
![]() 475 |
![]() 547 |
| 7a | S +7 | 11 | 357
|
![]() |
![]() 537 |
![]() 753 |
![]() 375 |
![]() 573 |
![]() 357 |
![]() 735 |
| 7a | S +7 | 12 | 367
|
![]() |
![]() 736 |
![]() 673 |
![]() 367 |
![]() 763 |
![]() 376 |
![]() 637 |
| 7a | S +7 | 14 | 567
|
![]() |
![]() 576 |
![]() 657 |
![]() 765 |
![]() 567 |
![]() 756 |
![]() 675 |































































































































































































































