R7.3
Problem Statement
Find (a) the scalar product, (b) the magnitude of
and
,(c) the angle between
and
for:
1)
2)
Part 2
solved by Luca Imponenti
Scalar Product


![{\displaystyle ={\frac {1}{4}}[({\frac {15}{6}}1^{6}-1^{4}+{\frac {3}{2}}1^{2})-({\frac {15}{6}}(-1)^{6}-(-1)^{4}+{\frac {3}{2}}(-1)^{2})]\!}](../../../53cff8357d3b5f93f2fbaae853728c278b35d84e.svg)
Since all exponents are even, everything in brackets cancels out
Magnitude
![{\displaystyle =\int _{-1}^{1}[{\frac {1}{2}}(3x^{2}-1)]^{2}\ dx\!}](../../../96ccb23d62629ff7917a2a6e03e2a6750c6a1cb2.svg)


![{\displaystyle ={\frac {1}{4}}[({\frac {9}{5}}1^{5}-2(1)^{3}+1)-({\frac {9}{5}}(-1)^{5}-2(-1)^{3}+(-1))]\!}](../../../6a67a46b3168d49f86e6b9d5193940336b666e72.svg)
![{\displaystyle ={\frac {1}{4}}[{\frac {4}{5}}-(-{\frac {4}{5}})]\!}](../../../c25eee2b658f4822793325fe55dbe628ec494f4e.svg)
![{\displaystyle =\int _{-1}^{1}[{\frac {1}{2}}(5x^{3}-3x)]^{2}\ dx\!}](../../../b7dab4c84a1b03ac40fba4b50302dfb4d1a45262.svg)


![{\displaystyle ={\frac {1}{4}}[({\frac {25}{7}}1^{7}-6(1)^{5}+3(1)^{3})-({\frac {25}{7}}(-1)^{7}-6(-1)^{5}+3(-1)^{3})]\!}](../../../a4531b4d40107736928a68a1c13e726c81505e0f.svg)
![{\displaystyle ={\frac {1}{4}}[{\frac {4}{7}}-(-{\frac {4}{7}})]\!}](../../../3dc29b7811deeaa641b8e5ecbb01cb934edd33a2.svg)
Angle Between Functions
Since
the two functions are orthogonal