History of three-acceleration transformation
The Lorentz transformation of three-acceleration is given by
- a)
![{\displaystyle {\begin{matrix}a_{x}^{\prime }={\frac {a_{x}}{\gamma ^{3}\mu ^{3}}},\quad a_{y}^{\prime }={\frac {a_{y}}{\gamma ^{2}\mu ^{2}}}+{\frac {a_{x}u_{y}v}{c^{2}\gamma ^{2}\mu ^{3}}},\quad a_{z}^{\prime }={\frac {a_{z}}{\gamma ^{2}\mu ^{2}}}+{\frac {a_{x}u_{z}v}{c^{2}\gamma ^{2}\mu ^{3}}}\\\left[\gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}},\ \mu =1-{\frac {u_{x}v}{c^{2}}}\right]\end{matrix}}}](../2dd1bc2da9cc7ffcc67dc0c865fc798d033ebe55.svg)
or in vector notation in arbitrary directions
- b)
![{\displaystyle {\begin{matrix}\mathbf {a} '={\frac {\mathbf {a} }{\gamma ^{2}\mu ^{2}}}-{\frac {\mathbf {(a\cdot v)v} \left(\gamma _{v}-1\right)}{v^{2}\gamma ^{3}\mu ^{3}}}+{\frac {\mathbf {(a\cdot v)u} }{c^{2}\gamma ^{2}\mu ^{3}}}\\\left[\gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}},\ \mu =1-{\frac {\mathbf {v\cdot u} }{c^{2}}}\right]\end{matrix}}}](../5ad2e6b90a912d2755428bd57a2271e440180537.svg)
Equations a) were given by #Poincaré (1905/06), #Einstein (1907/08), #Abraham (1908), #Laue (1908), #Brill (1909), while the vector notation b) was given by #Tamaki (1913).
History
Poincaré (1905/06)
w:Henri Poincaré (July 1905, published January 1906) introduces the Lorentz transformation of three-acceleration:[R 1]

where
,
,
,
.
Einstein (1907/08)
w:Albert Einstein (December 1907, published 1908) defined the transformation by restricting himself to the x-component (apparently due to a printing error, Einstein's expression misses a cube in the denominator on the right hand side):[R 2]
.
Abraham (1908)
w:Max Abraham derived the transformation for three-acceleration by differentiation of the velocity addition in x an y direction:[R 3]

or simplified using three-vector
:

Laue (1908)
w:Max von Laue wrote the transformation in two dimensions x,y as follows:[R 4]

Brill (1909)
w:Alexander von Brill wrote the transformation in which the primed frame moves in z-direction while the x-axis is perpendicular:[R 5]

Tamaki (1913)
w:Kajuro Tamaki was the first to formulate the transformation as a single three-vector formula:[R 6]
![{\displaystyle \mathbf {a} '={\frac {\mathbf {a} -{\frac {1}{c^{2}}}\left[\mathbf {v} [\mathbf {vq} ]\right]+{\frac {1}{\beta }}(1-\beta )\mathbf {v} _{1}\left(\mathbf {v} _{1}\mathbf {a} \right)}{\beta ^{2}\left\{1-{\frac {1}{c^{2}}}(\mathbf {vq} )\right\}^{3}}}}](../512407f66d70c1ebe0df09275793b1f87f5d672e.svg)
which he split into two parts: the first in the direction of
and the other one perpendicular to it:
![{\displaystyle {\begin{aligned}\mathbf {a} _{v}^{\prime }&={\frac {\mathbf {a} _{v}-{\frac {1}{c^{2}}}\beta \left[\mathbf {v} [\mathbf {vq} ]\right]_{v}}{\beta ^{3}\left\{1-{\frac {1}{c^{2}}}(\mathbf {vq} )\right\}^{3}}}\\\mathbf {a} _{\bar {v}}^{\prime }&={\frac {\mathbf {a} _{\bar {v}}-{\frac {1}{c^{2}}}\left[\mathbf {v} [\mathbf {vq} ]\right]_{\bar {v}}}{\beta ^{2}\left\{1-{\frac {1}{c^{2}}}(\mathbf {vq} )\right\}^{3}}}\end{aligned}}}](../05f24f47a1ae1f065e1c56f3fc673d2ca03a78c0.svg)
References
- ↑ Poincaré (1905/06), p. 160
- ↑ Einstein (1907/08), p. 432
- ↑ Abraham (1908), pp. 375-376
- ↑ Laue (1908), p. 840
- ↑ Brill (1909), p. 210
- ↑ Tamaki (1913), p. 242
- Abraham, M. (1908), Theorie der Elektrizität: Elektromagnetische Theorie der Strahlung; 2. Auflage, Leipzig: Teubner
- Brill, A. (1909), Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Leipzig: B.G. Teubner
- Einstein, A. (1908) [1907], "Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen (The Collected Papers of Albert Einstein Vol. 2)", Jahrbuch der Radioaktivität und Elektronik, 4: 411–462, Bibcode:1905AnP...322..891E, doi:10.1002/andp.19053221004. See also: English translation in "CPAE Vol. 2".
- Laue, M. v. (1908), "Die Wellenstrahlung einer bewegten Punktladung nach dem Relativitätsprinzip", Berichte der Deutschen Physikalischen Gesellschaft: 838–844
See also the transcription The Wave Radiation of a Moving Point Charge in Accordance with the Principle of Relativity on English Wikisource
- Poincaré, H. (1906) [1905], "Sur la dynamique de l'électron", Rendiconti del Circolo Matematico di Palermo, 21: 129–176
See also the transcription Sur la dynamique de l’électron on French Wikisource
See also the transcription On the Dynamics of the Electron on English Wikisource