Example 1
Given:
![{\displaystyle \Pi ^{c}[{\boldsymbol {\sigma }}(\mathbf {x} )+\Delta {\boldsymbol {\sigma }}(\mathbf {x} )]-\Pi ^{c}[{\boldsymbol {\sigma }}(\mathbf {x} )]=\int _{\mathcal {R}}[U^{c}({\boldsymbol {\sigma }}+\Delta {\boldsymbol {\sigma }})-U^{c}({\boldsymbol {\sigma }})-{\boldsymbol {\varepsilon }}:\Delta {\boldsymbol {\sigma }}]~dV}](../d1f5004b1fe79a9bdf56ba1c70bc63e3f51a7862.svg)
Show:
![{\displaystyle \Pi ^{c}[{\boldsymbol {\sigma }}(\mathbf {x} )+\Delta {\boldsymbol {\sigma }}(\mathbf {x} )]-\Pi ^{c}[{\boldsymbol {\sigma }}(\mathbf {x} )]=\int _{\mathcal {R}}U^{c}(\Delta {\boldsymbol {\sigma }})~dV}](../1915200c1f8da8547612d27a15bbce1a8730df4f.svg)
Solution
For a linear elastic material, the complementary strain energy density is given by

where
is the compliance tensor.
Therefore,

or (using the symmetry of the compliance tensor),
![{\displaystyle {\begin{aligned}U^{c}({\boldsymbol {\sigma }}+\Delta {\boldsymbol {\sigma }})&={\frac {1}{2}}\left[\sigma _{ij}\sigma _{kl}+\sigma _{ij}\Delta \sigma _{kl}+\sigma _{kl}\Delta \sigma _{ij}+\Delta \sigma _{ij}\Delta \sigma _{kl}\right]S_{ijkl}\\&={\frac {1}{2}}\left[\sigma _{ij}S_{ijkl}\sigma _{kl}+\sigma _{ij}S_{ijkl}\Delta \sigma _{kl}+\sigma _{kl}S_{ijkl}\Delta \sigma _{ij}+\Delta \sigma _{ij}S_{ijkl}\Delta \sigma _{kl}\right]\\&={\frac {1}{2}}\left[\sigma _{ij}S_{ijkl}\sigma _{kl}+\varepsilon _{kl}\Delta \sigma _{kl}+\varepsilon _{ij}\Delta \sigma _{ij}+\Delta \sigma _{ij}S_{ijkl}\Delta \sigma _{kl}\right]\\&={\frac {1}{2}}\left[\sigma _{ij}S_{ijkl}\sigma _{kl}+2\varepsilon _{kl}\Delta \sigma _{kl}+\Delta \sigma _{ij}S_{ijkl}\Delta \sigma _{kl}\right]\\&={\frac {1}{2}}{\boldsymbol {\sigma }}:{\text{S}}:{\boldsymbol {\sigma }}+{\boldsymbol {\varepsilon }}:\Delta {\boldsymbol {\sigma }}+{\frac {1}{2}}\Delta {\boldsymbol {\sigma }}:{\text{S}}:\Delta {\boldsymbol {\sigma }}\\&=U^{c}({\boldsymbol {\sigma }})+{\boldsymbol {\varepsilon }}:\Delta {\boldsymbol {\sigma }}+U^{c}(\Delta {\boldsymbol {\sigma }})\end{aligned}}}](../ca4b367da714127828e51009dd44e210ef508732.svg)
Therefore,

Plugging into the given equation
![{\displaystyle \Pi ^{c}[{\boldsymbol {\sigma }}(\mathbf {x} )+\Delta {\boldsymbol {\sigma }}(\mathbf {x} )]-\Pi ^{c}[{\boldsymbol {\sigma }}(\mathbf {x} )]=\int _{\mathcal {R}}[U^{c}({\boldsymbol {\sigma }})+{\boldsymbol {\varepsilon }}:\Delta {\boldsymbol {\sigma }}+U^{c}(\Delta {\boldsymbol {\sigma }})-U^{c}({\boldsymbol {\sigma }})-{\boldsymbol {\varepsilon }}:\Delta {\boldsymbol {\sigma }}]~dV}](../a059252b3aceedc2e11f2a9765e0048caa98efd5.svg)
or,
![{\displaystyle {\Pi ^{c}[{\boldsymbol {\sigma }}(\mathbf {x} )+\Delta {\boldsymbol {\sigma }}(\mathbf {x} )]-\Pi ^{c}[{\boldsymbol {\sigma }}(\mathbf {x} )]=\int _{\mathcal {R}}U^{c}(\Delta {\boldsymbol {\sigma }})~dV}}](../4611db6a18696426785e679acd361871aa8a7b1b.svg)
Hence shown.