These pyramid pairs are refinements of the triangle pair Oak /[[ |Maple ]] .
In Liana /Ivy the axis valency is added. In TwistedLiana /Lonicera the axis gravity is added.
🌊 Liana and TwistedLiana are refinements of Oak .
Their sums along axis depth are Ash and TwistedAsh .
💧 Ivy and Lonicera are refinements of [[ |Maple ]].
Their sums along axis depth are Aspen and Alder .
Liana and TwistedLiana are essentially the same pyramid:
Liana
(
a
,
x
,
y
)
=
TwistedLiana
(
a
,
a
−
x
,
a
−
y
)
{\displaystyle {\text{Liana}}(a,x,y)={\text{TwistedLiana}}(a,a-x,a-y)}
So
Liana
(
a
,
x
,
y
)
{\displaystyle {\text{Liana}}(a,x,y)}
is the cardinality of two sets of
a
{\displaystyle a}
-ary seals:
Those with depth
x
{\displaystyle x}
and valency
y
{\displaystyle y}
,
and those with depth
a
−
x
{\displaystyle a-x}
and gravity
a
−
y
{\displaystyle a-y}
.
Pyramids Liana and Ivy
Only positive coordinates are shown. The column with d = v = 0 is hidden. Liana(a , 0, 0) = 1. Ivy(0, 0, 0) = 1.
equivalents counting houses
(a , d , v ) ↦ seals
Liana(a , d , v )Ivy(a , d , v )
is the number of seals with
arity adicity
a , depth d and valency v .
🌊 pyramid Liana
overview
Indices in the image go from 1 to 7.
Liana is always 1 where depth and valency are 0. But this column is not shown in the images.
The sum along valency is triangle Oak .
The sum along depth is triangle Ash .
The layer sums (and row sums of these triangles) are sequence Daisy .
fixed arity (depth  × valency matrices)
The row sums are rows of triangle Oak . The column sums are rows of triangle Ash . The total sums are entries of Daisy .
arity 0
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
arity 1
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
3
4
5
6
7
Σ
1
1
2
arity 2
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
1
3
2
1
1
3
4
5
6
7
Σ
1
2
2
5
arity 3
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
3
3
1
7
2
3
4
7
3
1
1
4
5
6
7
Σ
1
3
6
6
16
arity 4
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
4
6
4
1
15
2
6
16
13
35
3
4
11
15
4
1
1
5
6
7
Σ
1
4
12
24
26
67
arity 5
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
5
10
10
5
1
31
2
10
40
65
40
155
3
10
55
90
155
4
5
26
31
5
1
1
6
7
Σ
1
5
20
60
130
158
374
arity 6
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
6
15
20
15
6
1
63
2
15
80
195
240
121
651
3
20
165
540
670
1395
4
15
156
480
651
5
6
57
63
6
1
1
7
Σ
1
6
30
120
390
948
1330
2825
arity 7
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
7
21
35
35
21
7
1
127
2
21
140
455
840
847
364
2667
3
35
385
1890
4690
4811
11811
4
35
546
3360
7870
11811
5
21
399
2247
2667
6
7
120
127
7
1
1
Σ
1
7
42
210
910
3318
9310
15414
29212
fixed depth (arity  × valency matrices)
The row sums are columns of triangle Oak .
depth 0
v
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
depth 1
v
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
2
1
3
3
3
3
1
7
4
4
6
4
1
15
5
5
10
10
5
1
31
6
6
15
20
15
6
1
63
7
7
21
35
35
21
7
1
127
depth 2
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
1
1
3
3
4
7
4
6
16
13
35
5
10
40
65
40
155
6
15
80
195
240
121
651
7
21
140
455
840
847
364
2667
depth 3
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
1
1
4
4
11
15
5
10
55
90
155
6
20
165
540
670
1395
7
35
385
1890
4690
4811
11811
depth 4
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
1
1
5
5
26
31
6
15
156
480
651
7
35
546
3360
7870
11811
depth 5
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
1
1
6
6
57
63
7
21
399
2247
2667
depth 6
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
1
1
7
7
120
127
depth 7
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Ash
v
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
2
1
2
2
5
3
1
3
6
6
16
4
1
4
12
24
26
67
5
1
5
20
60
130
158
374
6
1
6
30
120
390
948
1330
2825
7
1
7
42
210
910
3318
9310
15414
29212
fixed valency (arity  × depth matrices)
The row sums are columns of triangle Ash .
valency 0
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
valency 1
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
valency 2
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
1
1
2
3
3
3
6
4
6
6
12
5
10
10
20
6
15
15
30
7
21
21
42
valency 3
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
1
4
1
6
4
4
16
4
24
5
10
40
10
60
6
20
80
20
120
7
35
140
35
210
valency 4
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
1
13
11
1
26
5
5
65
55
5
130
6
15
195
165
15
390
7
35
455
385
35
910
valency 5
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
1
40
90
26
1
158
6
6
240
540
156
6
948
7
21
840
1890
546
21
3318
valency 6
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
1
121
670
480
57
1
1330
7
7
847
4690
3360
399
7
9310
valency 7
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
7
1
364
4811
7870
2247
120
1
15414
sum: triangle Oak
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
2
1
3
1
5
3
1
7
7
1
16
4
1
15
35
15
1
67
5
1
31
155
155
31
1
374
6
1
63
651
1395
651
63
1
2825
7
1
127
2667
11811
11811
2667
127
1
29212
💧 pyramid Ivy
overview
Indices in the image go from 1 to 7.
The entry Ivy (0, 0, 0) = 1 is not shown in the images.
The sum along valency is triangle [[ |Maple ]] .
The sum along depth is triangle Aspen .
The layer sums (and row sums of these triangles) are sequence Dahlia .
The pyramid sides in the back (depth = 1) and front (valency − depth = 0) are Pascal's triangle .
fixed adicity (depth  × valency matrices)
The row sums are rows of triangle [[ |Maple ]]. The column sums are rows of triangle Aspen . The total sums are entries of Dahlia .
adicity 0
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
adicity 1
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
adicity 2
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
2
1
1
3
4
5
6
7
Σ
1
2
3
adicity 3
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
2
1
4
2
2
4
6
3
1
1
4
5
6
7
Σ
1
4
6
11
adicity 4
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
3
3
1
8
2
3
12
13
28
3
3
11
14
4
1
1
5
6
7
Σ
1
6
18
26
51
adicity 5
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
4
6
4
1
16
2
4
24
52
40
120
3
6
44
90
140
4
4
26
30
5
1
1
6
7
Σ
1
8
36
104
158
307
adicity 6
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
5
10
10
5
1
32
2
5
40
130
200
121
496
3
10
110
450
670
1240
4
10
130
480
620
5
5
57
62
6
1
1
7
Σ
1
10
60
260
790
1330
2451
adicity 7
v
d
0
1
2
3
4
5
6
7
Σ
0
1
1
6
15
20
15
6
1
64
2
6
60
260
600
726
364
2016
3
15
220
1350
4020
4811
10416
4
20
390
2880
7870
11160
5
15
342
2247
2604
6
6
120
126
7
1
1
Σ
1
12
90
520
2370
7980
15414
26387
fixed depth (adicity  × valency matrices)
The row sums are columns of triangle [[ |Maple ]].
depth 0
v
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
3
4
5
6
7
depth 1
v
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
1
1
2
3
1
2
1
4
4
1
3
3
1
8
5
1
4
6
4
1
16
6
1
5
10
10
5
1
32
7
1
6
15
20
15
6
1
64
depth 2
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
1
1
3
2
4
6
4
3
12
13
28
5
4
24
52
40
120
6
5
40
130
200
121
496
7
6
60
260
600
726
364
2016
depth 3
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
1
1
4
3
11
14
5
6
44
90
140
6
10
110
450
670
1240
7
15
220
1350
4020
4811
10416
depth 4
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
1
1
5
4
26
30
6
10
130
480
620
7
20
390
2880
7870
11160
depth 5
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
1
1
6
5
57
62
7
15
342
2247
2604
depth 6
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
1
1
7
6
120
126
depth 7
v
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Aspen
v
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
1
2
3
3
1
4
6
11
4
1
6
18
26
51
5
1
8
36
104
158
307
6
1
10
60
260
790
1330
2451
7
1
12
90
520
2370
7980
15414
26387
fixed valency (adicity  × depth matrices)
The row sums are columns of triangle Aspen .
valency 0
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
3
4
5
6
7
valency 1
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
valency 2
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
1
1
2
3
2
2
4
4
3
3
6
5
4
4
8
6
5
5
10
7
6
6
12
valency 3
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
1
4
1
6
4
3
12
3
18
5
6
24
6
36
6
10
40
10
60
7
15
60
15
90
valency 4
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
1
13
11
1
26
5
4
52
44
4
104
6
10
130
110
10
260
7
20
260
220
20
520
valency 5
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
1
40
90
26
1
158
6
5
200
450
130
5
790
7
15
600
1350
390
15
2370
valency 6
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
1
121
670
480
57
1
1330
7
6
726
4020
2880
342
6
7980
valency 7
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
7
1
364
4811
7870
2247
120
1
15414
sum: triangle Maple
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
2
1
3
3
4
6
1
11
4
8
28
14
1
51
5
16
120
140
30
1
307
6
32
496
1240
620
62
1
2451
7
64
2016
10416
11160
2604
126
1
26387
Pyramids TwistedLiana and Lonicera
🌊 TwistedLiana
💧 Lonicera
equivalents counting houses
(a , d , g ) ↦ seals
TwistedLiana(a , d , g )Lonicera(a , d , g )
is the number of seals with
arity adicity
a , depth d and gravity g .
🌊 pyramid TwistedLiana
overview
The sum along gravity is triangle Oak . The sum along depth is TwistedAsh .
The layer sums (and row sums of these triangles) are sequence Daisy .
fixed arity (depth  × gravity matrices)
The row sums are rows of Oak . The column sums are rows of TwistedAsh . The total sums are entries of Daisy .
arity 0
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
arity 1
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
3
4
5
6
7
Σ
1
1
2
arity 2
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
2
3
2
1
1
3
4
5
6
7
Σ
2
2
1
5
arity 3
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
4
3
7
2
1
3
3
7
3
1
1
4
5
6
7
Σ
6
6
3
1
16
arity 4
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
11
4
15
2
13
16
6
35
3
1
4
6
4
15
4
1
1
5
6
7
Σ
26
24
12
4
1
67
arity 5
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
26
5
31
2
90
55
10
155
3
40
65
40
10
155
4
1
5
10
10
5
31
5
1
1
6
7
Σ
158
130
60
20
5
1
374
arity 6
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
57
6
63
2
480
156
15
651
3
670
540
165
20
1395
4
121
240
195
80
15
651
5
1
6
15
20
15
6
63
6
1
1
7
Σ
1330
948
390
120
30
6
1
2825
arity 7
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
120
7
127
2
2247
399
21
2667
3
7870
3360
546
35
11811
4
4811
4690
1890
385
35
11811
5
364
847
840
455
140
21
2667
6
1
7
21
35
35
21
7
127
7
1
1
Σ
15414
9310
3318
910
210
42
7
1
29212
fixed depth (arity  × gravity matrices)
The row sums are columns of Oak .
depth 0
g
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
depth 1
The left column shows the Euler numbers (A000295 ). Their positive terms are summations of 1, 3, 7, 15, 31...
g
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
1
2
3
3
4
3
7
4
11
4
15
5
26
5
31
6
57
6
63
7
120
7
127
depth 2
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
1
1
3
1
3
3
7
4
13
16
6
35
5
90
55
10
155
6
480
156
15
651
7
2247
399
21
2667
depth 3
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
1
1
4
1
4
6
4
15
5
40
65
40
10
155
6
670
540
165
20
1395
7
7870
3360
546
35
11811
depth 4
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
1
1
5
1
5
10
10
5
31
6
121
240
195
80
15
651
7
4811
4690
1890
385
35
11811
depth 5
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
1
1
6
1
6
15
20
15
6
63
7
364
847
840
455
140
21
2667
depth 6
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
1
1
7
1
7
21
35
35
21
7
127
depth 7
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle TwistedAsh
g
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
2
2
2
1
5
3
6
6
3
1
16
4
26
24
12
4
1
67
5
158
130
60
20
5
1
374
6
1330
948
390
120
30
6
1
2825
7
15414
9310
3318
910
210
42
7
1
29212
fixed gravity (arity  × depth matrices)
The row sums are columns of TwistedAsh .
gravity 0
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
1
1
2
3
1
4
1
6
4
1
11
13
1
26
5
1
26
90
40
1
158
6
1
57
480
670
121
1
1330
7
1
120
2247
7870
4811
364
1
15414
gravity 1
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
2
2
3
3
3
6
4
4
16
4
24
5
5
55
65
5
130
6
6
156
540
240
6
948
7
7
399
3360
4690
847
7
9310
gravity 2
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
1
1
3
3
3
4
6
6
12
5
10
40
10
60
6
15
165
195
15
390
7
21
546
1890
840
21
3318
gravity 3
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
1
1
4
4
4
5
10
10
20
6
20
80
20
120
7
35
385
455
35
910
gravity 4
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
1
1
5
5
5
6
15
15
30
7
35
140
35
210
gravity 5
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
1
1
6
6
6
7
21
21
42
gravity 6
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
1
1
7
7
7
gravity 7
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Oak
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
2
1
3
1
5
3
1
7
7
1
16
4
1
15
35
15
1
67
5
1
31
155
155
31
1
374
6
1
63
651
1395
651
63
1
2825
7
1
127
2667
11811
11811
2667
127
1
29212
💧 pyramid Lonicera
overview
The sum along gravity is triangle [[ |Maple ]] . The sum along depth is triangle Alder .
The layer sums (and row sums of these triangles) are sequence Dahlia .
fixed adicity (depth  × gravity matrices)
The row sums are rows of [[ |Maple ]]. The column sums are rows of Alder . The total sums are entries of Dahlia .
adicity 0
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
adicity 1
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
adicity 2
g
d
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
2
1
1
3
4
5
6
7
Σ
1
1
1
3
adicity 3
g
d
0
1
2
3
4
5
6
7
Σ
0
1
3
1
4
2
1
3
2
6
3
1
1
4
5
6
7
Σ
4
4
2
1
11
adicity 4
g
d
0
1
2
3
4
5
6
7
Σ
0
1
7
1
8
2
12
13
3
28
3
1
4
6
3
14
4
1
1
5
6
7
Σ
20
18
9
3
1
51
adicity 5
g
d
0
1
2
3
4
5
6
7
Σ
0
1
15
1
16
2
77
39
4
120
3
39
61
34
6
140
4
1
5
10
10
4
30
5
1
1
6
7
Σ
132
106
48
16
4
1
307
adicity 6
g
d
0
1
2
3
4
5
6
7
Σ
0
1
31
1
32
2
390
101
5
496
3
630
475
125
10
1240
4
120
235
185
70
10
620
5
1
6
15
20
15
5
62
6
1
1
7
Σ
1172
818
330
100
25
5
1
2451
adicity 7
g
d
0
1
2
3
4
5
6
7
Σ
0
1
63
1
64
2
1767
243
6
2016
3
7200
2820
381
15
10416
4
4690
4450
1695
305
20
11160
5
363
841
825
435
125
15
2604
6
1
7
21
35
35
21
6
126
7
1
1
Σ
14084
8362
2928
790
180
36
6
1
26387
fixed depth (adicity  × gravity matrices)
The row sums are columns of [[ |Maple ]].
depth 0
g
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
3
4
5
6
7
depth 1
g
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
1
1
2
3
3
1
4
4
7
1
8
5
15
1
16
6
31
1
32
7
63
1
64
depth 2
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
1
1
3
1
3
2
6
4
12
13
3
28
5
77
39
4
120
6
390
101
5
496
7
1767
243
6
2016
depth 3
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
1
1
4
1
4
6
3
14
5
39
61
34
6
140
6
630
475
125
10
1240
7
7200
2820
381
15
10416
depth 4
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
1
1
5
1
5
10
10
4
30
6
120
235
185
70
10
620
7
4690
4450
1695
305
20
11160
depth 5
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
1
1
6
1
6
15
20
15
5
62
7
363
841
825
435
125
15
2604
depth 6
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
1
1
7
1
7
21
35
35
21
6
126
depth 7
g
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Alder
g
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
1
1
1
3
3
4
4
2
1
11
4
20
18
9
3
1
51
5
132
106
48
16
4
1
307
6
1172
818
330
100
25
5
1
2451
7
14084
8362
2928
790
180
36
6
1
26387
fixed gravity (adicity  × depth matrices)
The row sums are columns of Alder .
gravity 0
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
1
1
3
3
1
4
4
7
12
1
20
5
15
77
39
1
132
6
31
390
630
120
1
1172
7
63
1767
7200
4690
363
1
14084
gravity 1
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
2
1
1
3
1
3
4
4
1
13
4
18
5
1
39
61
5
106
6
1
101
475
235
6
818
7
1
243
2820
4450
841
7
8362
gravity 2
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
1
1
3
2
2
4
3
6
9
5
4
34
10
48
6
5
125
185
15
330
7
6
381
1695
825
21
2928
gravity 3
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
1
1
4
3
3
5
6
10
16
6
10
70
20
100
7
15
305
435
35
790
gravity 4
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
1
1
5
4
4
6
10
15
25
7
20
125
35
180
gravity 5
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
1
1
6
5
5
7
15
21
36
gravity 6
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
1
1
7
6
6
gravity 7
d
a
0
1
2
3
4
5
6
7
Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Maple
d
a
0
1
2
3
4
5
6
7
Σ
0
1
1
1
1
1
2
2
1
3
3
4
6
1
11
4
8
28
14
1
51
5
16
120
140
30
1
307
6
32
496
1240
620
62
1
2451
7
64
2016
10416
11160
2604
126
1
26387
other sides
depth − gravity = 0 Pascal's triangle (with trivial column on the left)
adicity − depth = 1 almost Pascal's triangle (without right diagonal, next reduced by 1)