Sequence Violet
| Studies of Boolean functions sequences related to Boolean functions |
| diagonal | triangle | total | |
|---|---|---|---|
| ♀ | Robinia | Primula | |
| ♂ | HalfGrass | HalfCedar | HalfCrocus |
| all | Lotus | Willow | Grass |
| ♂ − ♀ | NonLotus | Hickory | Hyacinth |
Violet is the difference of Lotus and HalfGrass:
| 0 | 1 | 2 − 1 |
|---|---|---|
| 1 | 0 | 2 − 2 |
| 2 | 2 | 10 − 8 |
| 3 | 90 | 218 − 128 |
| 4 | 31826 | 64594 − 32768 |
| 5 | 2147158386 | 4294642034 − 2147483648 |
| 6 | 9223372011085950170 | 18446744047940725978 − 9223372036854775808 |
| 7 | 170141183460469231602560095290109272522 | 340282366920938463334247399005993378250 − 170141183460469231731687303715884105728 |
All entries except the first are even. Their halves are A007537.
Violet is the diagonal of the triangles Robinia(Drop).
| a ↦ dense ♀ | Violet(a) is the number of dense female BF with arity a. |